Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 5330, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593313

RESUMO

Kochia scoparia is a troublesome weed across the Great Plains of North America. Glyphosate and dicamba have been used for decades to control K. scoparia. Due to extensive selection, glyphosate- and dicamba-resistant (GDR) K. scoparia have evolved in the USA. Herbicide mixtures are routinely used to improve weed control. Herbicide interactions if result in an antagonistic effect can significantly affect the management of weeds, such as K. scoparia. To uncover the interaction of glyphosate and dicamba when applied in combination in K. scoparia management the efficacies of different doses of glyphosate plus dicamba were evaluated under greenhouse and field conditions using GDR and a known glyphosate- and dicamba-susceptible (GDS) K. scoparia. The results of greenhouse and field studies suggest that the combination of glyphosate and dicamba application controlled GDS, but glyphosate alone provided a better control of GDR K. scoparia compared to glyphosate plus dicamba combinations. Furthermore, investigation of the basis of this response suggested glyphosate and dicamba interact antagonistically and consequently, the translocation of both herbicides was significantly reduced resulting in poor control of K. scoparia. Therefore, a combination of glyphosate plus dicamba may not be a viable option to control GDR K. scoparia.


Assuntos
Bassia scoparia/metabolismo , Dicamba/metabolismo , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/metabolismo , Desenvolvimento Vegetal , Bassia scoparia/efeitos dos fármacos , Transporte Biológico , Isótopos de Carbono/metabolismo , Dicamba/farmacologia , Relação Dose-Resposta a Droga , Glicina/metabolismo , Herbicidas/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Controle de Plantas Daninhas , Glifosato
2.
Pest Manag Sci ; 73(11): 2236-2243, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28500680

RESUMO

BACKGROUND: Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth. RESULTS: A population of Palmer amaranth from Kansas (KSR) had a high level (160 - 198-fold more; SE ±21 - 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S-transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait. CONCLUSION: Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non-target-site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry.


Assuntos
Amaranthus/fisiologia , Atrazina/farmacologia , Glutationa Transferase/metabolismo , Resistência a Herbicidas , Herbicidas/farmacologia , Proteínas de Plantas/metabolismo , Sequência de Bases , Evolução Molecular , Kansas
3.
Front Plant Sci ; 8: 555, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443128

RESUMO

Herbicides that inhibit hydroxyphenylpyruvate dioxygenase (HPPD) such as mesotrione are widely used to control a broad spectrum of weeds in agriculture. Amaranthus palmeri is an economically troublesome weed throughout the United States. The first case of evolution of resistance to HPPD-inhibiting herbicides in A. palmeri was documented in Kansas (KS) and later in Nebraska (NE). The objective of this study was to investigate the mechansim of HPPD-inhibitor (mesotrione) resistance in A. palmeri. Dose response analysis revealed that this population (KSR) was 10-18 times more resistant than their sensitive counterparts (MSS or KSS). Absorbtion and translocation analysis of [14C] mesotrione suggested that these mechanisms were not involved in the resistance in A. palmeri. Importantly, mesotrione (>90%) was detoxified markedly faster in the resistant populations (KSR and NER), within 24 hours after treatment (HAT) compared to sensitive plants (MSS, KSS, or NER). However, at 48 HAT all populations metabolized the mesotrione, suggesting additional factors may contribute to this resistance. Further evaluation of mesotrione-resistant A. palmeri did not reveal any specific resistance-conferring mutations nor amplification of HPPD gene, the molecular target of mesotrione. However, the resistant populations showed 4- to 12-fold increase in HPPD gene expression. This increase in HPPD transcript levels was accompanied by increased HPPD protein expression. The significant aspects of this research include: the mesotrione resistance in A. palmeri is conferred primarily by rapid detoxification (non-target-site based) of mesotrione; additionally, increased HPPD gene expression (target-site based) also contributes to the resistance mechanism in the evolution of herbicide resistance in this naturally occurring weed species.

4.
Methods ; 94: 43-50, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344757

RESUMO

Stem cell-derived cardiomyocytes have the potential to be used to study heart disease and maturation, screen drug treatments, and restore heart function. Here, we discuss the procedures involved in using micropost arrays to measure the contractile forces generated by stem cell-derived cardiomyocytes. Cardiomyocyte contractility is needed for the heart to pump blood, so measuring the contractile forces of cardiomyocytes is a straightforward way to assess their function. Microfabrication and soft lithography techniques are utilized to create identical arrays of flexible, silicone microposts from a common master. Micropost arrays are functionalized with extracellular matrix protein to allow cardiomyocytes to adhere to the tips of the microposts. Live imaging is used to capture videos of the deflection of microposts caused by the contraction of the cardiomyocytes. Image analysis code provides an accurate means to quantify these deflections. The contractile forces produced by a beating cardiomyocyte are calculated by modeling the microposts as cantilever beams. We have used this assay to assess techniques for improving the maturation and contractile function of stem cell-derived cardiomyocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Análise de Célula Única/instrumentação , Adesão Celular , Células Cultivadas , Humanos , Contração Miocárdica , Análise de Célula Única/métodos
5.
PLoS One ; 10(5): e0126731, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992558

RESUMO

Herbicide efficacy is known to be influenced by temperature, however, underlying mechanism(s) are poorly understood. A marked alteration in mesotrione [a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor] efficacy on Palmer amaranth (Amaranthus palmeri S. Watson) was observed when grown under low- (LT, 25/15 °C, day/night temperatures) and high (HT, 40/30° C) temperature compared to optimum (OT, 32.5/22.5 °C) temperature. Based on plant height, injury, and mortality, Palmer amaranth was more sensitive to mesotrione at LT and less sensitive at HT compared to OT (ED50 for mortality; 18.5, 52.3, and 63.7 g ai ha-1, respectively). Similar responses were observed for leaf chlorophyll index and photochemical efficiency of PSII (Fv/Fm). Furthermore, mesotrione translocation and metabolism, and HPPD expression data strongly supported such variation. Relatively more mesotrione was translocated to meristematic regions at LT or OT than at HT. Based on T50 values (time required to metabolize 50% of the 14C mesotrione), plants at HT metabolized mesotrione faster than those at LT or OT (T50; 13, 21, and 16.5 h, respectively). The relative HPPD:CPS (carbamoyl phosphate synthetase) or HPPD:ß-tubulin expression in mesotrione-treated plants increased over time in all temperature regimes; however, at 48 HAT, the HPPD:ß-tubulin expression was exceedingly higher at HT compared to LT or OT (18.4-, 3.1-, and 3.5-fold relative to untreated plants, respectively). These findings together with an integrated understanding of other interacting key environmental factors will have important implications for a predictable approach for effective weed management.


Assuntos
Amaranthus/fisiologia , Cicloexanonas/farmacologia , Temperatura , 4-Hidroxifenilpiruvato Dioxigenase/genética , Amaranthus/genética , Amaranthus/crescimento & desenvolvimento , Isótopos de Carbono , Clorofila/metabolismo , Genes de Plantas
6.
Pest Manag Sci ; 71(9): 1207-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25950428

RESUMO

BACKGROUND: Evolution of multiple herbicide resistance in weeds is a serious threat to weed management in crop production. Kochia is an economically important broadleaf weed in the U.S. Great Plains. This study aimed to confirm resistance to four sites of action of herbicides in a single kochia (Kochia scoparia L. Schrad.) population from a crop field near Garden City (GC), Kansas, and further determine the underlying mechanisms of resistance. RESULTS: One-fourth of the GC plants survived the labeled rate or higher of atrazine [photosystem II (PSII) inhibitor], and the surviving plants had the Ser-264 to Gly mutation in the psbA gene, the target site of atrazine. Results showed that 90% of GC plants survived the labeled rate of dicamba, a synthetic auxin. At least 87% of the plants survived up to 72 g a.i. ha(-1) of chlorsulfuron [acetolactate synthase (ALS) inhibitor], and analysis of the ALS gene revealed the presence of Pro-197 to Thr and/or Trp-574 to Lue mutation(s). Most GC plants also survived the labeled rate of glyphosate [5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitor), and the resistant plants had 5-9 EPSPS gene copies (relative to the ALS gene). CONCLUSION: We confirm the first case of evolution of resistance to four herbicide sites of action (PSII, ALS and EPSPS inhibitors and synthetic auxins) in a single kochia population, and target-site-based mechanisms confer resistance to atrazine, glyphosate and chlorsulfuron.


Assuntos
Bassia scoparia/fisiologia , Resistência a Herbicidas , Herbicidas , Atrazina , Bassia scoparia/genética , DNA de Plantas/genética , Dicamba , Glicina/análogos & derivados , Kansas , Mutação , Plantas Daninhas , Sulfonamidas , Triazinas , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...